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A new method is presented for solution of the Boltzmann equation governing 
the dynamic behaviour of gases. The essence of the method is idealization of the 
problem domain into subdomains called finite elements. Then, the Galerkin 
assumed-mode technique is employed as the basis for discretization of the in- 
dividual ftnite elements and also for the assembly of the resulting algebraic 
models for these finite elements to form an algebraic model for the complete 
problem. The procedure is cast in a systematic matrix notation that makes 
evident the broad application potential of the analysis method. An illustrative 
application is presented for the problem of one-dimensional, linearized Couette 
flow. Numerical predictions of macroscopic flow velocity and viscous shear stress 
based upon the subject finite element method are compared with alternative 
analytical and numerical results. Special attributes of the finite element method 
are discussed in the context of this example problem. Applications to practical 
problems governed by generalized forms of the Boltzmann equation are projected 
on the basis of concepts established herein. 

1. Introduction 
The kinetic theory approach to gas dynamics by way of the Boltzmann equa- 

tion has obvious attraction. Solution of the Boltzmann equation for the velocity 
distribution function completely characterizes the flow. That is, quantities such 
as density, velocity, temperature and shear stress are derivable from the solution 
for the velocity distribution function. Moreover, the Boltzmann equation is 
valid over all flow regimes from free molecular to continuum. 

These attractive completeness and applicability characteristics of solutions 
to the Boltzmann equation are of real value only in so far as such solutions are 
tractable. The level of difficulty, taken together with available analysis tools, has 
frequently prohibited direct solution of the Boltzmann equation for arbitrary 
Knudsen numbers. 

In  many gas dynamics flows of great practical interest, the complete spectrum 
of flow regimes from continuum to free molecular is encountered, as, for example, 
in the expansion of a rocket exhaust into a vacuum, or the supersonic flow of a 
gas past a sharp leading edge. Flows of this nature clearly indicate the need for 
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and usefulness of a solution technique applicable over a wide range of Knudsen 
numbers. 

A new method, adapted from the finite element analysis technology of solid 
mechanics (Zienkiewicz 1967; Przemieniecki 1968), is presented herein for direct 
solution of the Boltzmann equation governing flow throughout all regimes 
from free molecular to continuum. The study described herein discloses a 
promising potential of the finite element method in the prediction of behaviour 
governed by the Boltzmann equation. 

The finite element method involves a physical idealization and a mathematical 
discretization. In  the finite element idealization of a problem domain, the con- 
tinuous domain is replaced by a system of discrete component subdomains. 
These subdomains, hereinafter called finite elements, are defined such that 
appropriate inter-element contact is maintained (Tong & Pian 1967). 

Construction and solution 
of mathematical model for 
complete system 

Input 
Definition of physical model 
geometry and boundary 
conditions 

r 4 1 

- I 
I Generation of mathematical I models for finite elements 

pressures, temperatures, 
stresses, etc. 

FIGURE 1. Computational flow chart for finite element formulation. 

Mathematical discretization of the functions of a problem (e.g. velocity dis- 
tribution function) is effected by the construction of approximating functions. 
Within the framework of the finite element idealization, discret,ization of each 
finite element is effected individually. Only approximating functions which 
provide for appropriate function continuity across interfaces with adjoining 
finite elements are admissible to the discretization of a finite element. 

It is useful to emphasize the facility with which problematical variations are 
accommodated within the context of the finite element computational process. 
The basic computational flow of a finite element gas flow analysis is illustrated in 
figure 1. The important distinguishing feature to be noted in this flow chart is 
that the mathematical description of the system is generated independently of 
the objective mathematical model for the system. That is, the physical description 
is referred to the individual finite elements and is transformed to appropriate 
finite element mathematical representation without regard to the configuration 
of the total system and its boundary conditions. This separation contributes to 
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the generality of the h i t e  element method in regard to both complexity and 
broad applicability. 

Regarding complexity, referencing of problem description to individual finite 
elements permits convenient consideration of variations in geometry and bound- 
ary conditions (Malletrt7 Braun & Hunter 1968). Regarding applicability, this is 
limited only by the suitability of the finite elements made available for idealiza- 
tion (Oden 1969). 

The particular problem considered herein is that of linearized one-dimensional 
Couette flow. This problem was chosen because many analytical and numerical 
solutions exist with which the present results may be compared. In the interest of 
simplicity, the Bhatnagar-Gross-Krook (1 954) model of the Boltzmann equa- 
tion is taken as the governing equation, and, furthermore, diffuse reflexion is 
assumed. As will become apparent, however, the proposed method of solution 
is applicable when the full collision integral is retained and when more general 
boundary conditions me employed. 

The analytical development of the objective finite element method is outlined 
within 9 2. Numerical results derived from the finite element method are presented 
in $ 3  and compared with the predictions of alternative methods. The paper is 
concluded in 3 4 with a retrospective examination of the investigation reported 
herein and projection of future developments. 

2. Analytical development 
(i) Basic equation 

The point of departure for this development of an analytical finite element 
model for the problem defined in figure 2 is taken to be the Boltzmann equation 
with the Bhatnagar-Gross-Krook collision term. Under the assumptions of 
steady flow in the absence of external forces, the governing equation for the velo- 
city distribution functionf may be written 

a !  
aE v . - = 6n(P -f), 

where v is the microscopic velocity vector, and 5 = (tZ7 Fv, &) is the position 
vector. The quantity 6n is proportional to the local collision frequency. P is a 
local Maxwellian distribution defined by 

where the macroscopic number density, velocity and temperature are given by 

and ( 5 )  

12-2 
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As shown by Gross, Jackson & Ziering (1957), the assumptions of small wall 
velocities ~t iw, constant number density no, and constant temperature To, 
lead to the following non-dimensional governing equation 

The perturbation function $ is related to the distribution function f by 

f = no pi 77-3 e-c' [ 1 + wes $1, (7) 

where lipo = J(2RT0), and where R denotes the gas constant. All velocities have 
been non-dimensionalized by the most probably molecular speed 1/p0, and the 
spatial co-ordinates have been non-dimensionalized by the plate separation d .  
The parameter a has the physical meaning of an inverse Knudsen number based 
upon plate separation d.  

7 J l / l / / / / / / l / / / / /  I /  I / / /  / / / / / /  I / I 1  I I 

FIaoRE 2. Physical problem and co-ordinate system. 

x= -4 

Boundary conditions for (6) are obtained by assuming that molecules emitted 
from a surface have a Maxwellian distribution characteristic of the surface 
temperature and motion. It is further assumed that there is no net mass flow 
at the surface, and that the number of molecules between the walls is constant. 
With these assumptions the boundary conditions become 

I $(x= -1 2, c, > 0) = -1,  

$(x = 4, c, < 0) = + 1. 

At this point it is convenient to introduce a two stream character to the function 
9. As pointed out by Gross et aE. (1957), such a division is necessary in order to 
adequately describe the distribution function within a mean free path of this 
surface, since in general, the function $ will be discontinuous a t  solid boundaries 
for c = 0. With this assumption, the governing equation becomes 

subject to the boundary conditions 

@*(x = T 4, c,) = T 1, 
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where 

$- @+ = = 0, O' c, cx > 0. "I 
In  addition to the macroscopic 0ow velocity us, defined by (5) ,  the viscous shear- 

ing stress, defined by 

rii = m/j/+m(wi-ui) -m (wi-ui)f(g,v)dv (12) 

is of interest. In  the established notation, these quantities may be written 

exp ( - c 3  %($+ + $-) dc,, (14) and k=- 
rxzfm --m 

where u, is normalized by the non-dimensional velocity of one of the plates and 
T~ is non-dimensionalized by the free molecular value of the shear stress 

(Gqm = - wl2J.). 

Before proceeding to the solution phase of the development it is useful to 
introduce a final restatement of the governing relations. Specifically, the follow- 
ing transformation of dependent variables is introduced in order to achieve a 
form characterized by homogeneous boundary conditions : 

4+@, c )  = $+- ++, 
4 - ( x ,  c )  = $-- +-, 

(15) 

(16) 

where +* denote the boundary conditions on $+, respectively, and the subscript 
z is omitted. 

The result of this set of transformations upon substitution into (9) and (10) is 

and +*(x = T 4, c < 0) = 0. (18) 

This is the objective form of the governing relations. Subsequent development 
will focus upon the discretization of these relations within the framework of the 
finite element technology. 

(ii) The Jinite element idealization 
In  the preceding section the domain of the given problem was divided into two 
adjoining subdomains. The finite element idealization process undertaken here 
is not unlike the preceding division process in that the domain is viewed as an 
assemblage of appropriately interconnected discrete zones called finite elements. 
Solution of the overall probIem is approached via solution of the individual finite 
elements. 
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Figure 3 illustrates the region of the problem field that is taken to comprise a 
typical pair of finite elements for the adjoined positive and negative subdomains. 
The j+th finite element in the positive subdomain d f  encompasses a physical 
length in x of l j ,  and extends from zero to infinity over the velocity co-ordinate. 
The complementaryjth finite element in the negative subdomain d; encompasses 
a similar length in x of li and extends in the negative direction from zero:to infinity. 

+C 

-X  - 
1 
* 2 3  

--oo 
-C 

FIQURE 3. Discretization of phase space. 

An approximate solution to the problem posed by (17) and (18) is sought herein 
using as a basis the Galerkin assumed mode technique. The point of departure 
in the Galerkin solution process is the construction of mode shapes with undeter- 
mined coefficients. A general form of such mode shapes for the subject problem is 

given by R S  

@ * ( Z ) C )  = C C ur(x)  vs(c)qZ- (19) 
r=O s=O 

Admissibility requirements stipulate that these assumed functions be complete, 
sufficiently smooth and satisfy the boundary conditions of the problem. These 
requirements are generally difficult to satisfy ‘in the large ’ but comparatively 
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easy to satisfy over the region of a finite element. This observation has identified 
the most important distinguishing characteristic of the finite element method, 
namely, the construction of mode shapes with respect to convenient subregions 
of the complete field. Thus, attention is focused upon the j th  finite elements 
dif and d;, wherein the functions $$ and $7 are expressed in terms of the mole- 
cular velocity c and a local space co-ordinate 7 as 

S S 

Before proceeding further, it is instructive to illustrate that the assumed 
functions provide for continuity between finite elements. By letting g = 0 and 
g = 1 in the elements d! and dy, one obtains 

and 

This separation of the complete set for the j th  element into a subset associated 
with $i (O,  c )  and a subset associated with $F(l, c) is illustrated in figure 4. Therein, 

point j point j +  1 
0 

l J + l  lJ -1  1J 
0 * 0 

#' J-1 = + - + i f f q t  J 2v+ZEq%+1 +f=+;+;Iiffqg+2=q&+1 

FIGURE 4. Illustration of continuity between finite elements. 

the j t h  finite element is shown in situ between adjacent j - 1 and j + 1 elements. 
It follows immediately by examination of ( 2 2 )  and (23) together with figure 4 
that the desired continuity of q5*(z, c )  is established simply by setting 

(&fJj-l = (&+1)j. (23) 

Moreover, it is also clear from this inspection that the homogeneous boundary 
conditions are satisfied simply by setting the boundary related q to zero for the 
finite element that resides a t  the boundary. 

As mentioned earlier, in general the functions #+ and 4- wiIl be discontinuous 
at c = 0, and thus there are no continuityrequirements to be satisfied across c = 0. 

(iii) The jinite element representation 

Substitution of the assumed solution, (21), in the governing equation, (17), will, 
in general, result in an error, i.e. the approximation will not satisfy the governing 
equation exactly. In  the finite element method, it is required that a suitable set 
of weighting functions be orthogonal to this error over the area of the finite 
element. The weighting functions chosen herein are the approximating functions 
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used in the expansion, which is Galerkin's method. This and alternate methods are 
discussed by Finlayson & Scriven (1966). 

The Galerkin method for discretization of the governing integrodifferential 
equation proceeds as follows. Substitution of the assumed expansion q5j into the 
integrodifferential equations yields 

where €7 and €7 denote the errors, or residuals, which result from the approxima- 
tion given by (21). The linearly independent mode shapes are now required to be 
individually orthogonal to these residuals thereby leading to a set of algebraic 
equations governing the behaviour of the finite element. This requirement can 
be expressed as j-1 som %€+dCd7 = 0 (i = 1,2, ..., 2 s +  2), (25) 

and -€-dcd?j = 0 (i = 1,2,  ..., 2S+2) .  j: Jr, ;:: 
Note that the subscript j has been omitted. 

The first step taken toward imposing these requirements is substitution for 
the weighting functions aq5*/aqi from (19). In  so doing, it is convenient to separate 
the requirements according to whether i is odd or even to obtain the following: 

and j: j:, [( 1 - 'I) ~ ~ ( ~ - ~ ) e - ~ ' ]  e-dcdg = 0 (i odd to 2X+ l), (29) 

The next step in proceeding toward expansion of these requirements in terms 
of the assumed functions is the construction of expanded expressions for the 
residuals. By substituting theassumedfunctionsinto thedifferentialequationsone 

obtains, s 1  1 
€* = 2 [ - cS+1 e-c2 q$+l + - 1 cs+l e-caq2fs+2 

s=o 
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Development of the objective matrix equation governing behaviour within a 
finite element is completed simply by substitution of the expressions for the resi- 
duals into (27)-(30) and carrying out the indicated integration. This lengthy 
algebraic process is omitted herein and the resulting matrix equation is recorded 
as 

or, in partitioned form, 
[KI {c11 = {PI, (35) 

and 
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The remaining submatrices in (36) are obtained simply by interchanging the 
‘ - ’ and ‘ + ’ superscripts. 

Having given explicit definition to the matrices of (35), development of the 
objective finite element representation is completed by the construction of 
explicit relations for the flow velocity and shear stress. These follow immediately 
upon substitution of the assumed mode shapes as 

(53) 
1 9  + (7) ( [mdI+[ Iu l{Q2)9  

T ~ ~ / T , ~ / ,  = - (Ji +- + Jt ++) 

- (1 - (r/W ([I,+] { a t )  + [I;] {!lo>) 
- (9/Q U,+I {d>+ [I71 {a;)), (54) 

( 5 5 )  

(56 )  

where [I$IT = [If, I?, . . * 9 GI, 
[13T = [I?, If, . .., Ij$+J. 

Upon solution for the primary variables {q} these relations permit calculation 
of numerical values for the non-dimensional velocity and shear stress within the 
finite element subdomain. 

(iv) The complete system representation 

The preceding development has made available at this point a matrix relation 
which governs the behaviour within a finite element of arbitrary physical length. 
The assumed mode shapes inherent within this matrix representation of the 
finite element permit only a linear variation in @(x, c) in the z-direction. A piece- 
wise linear approximation of the actual @(x, c) is thereby achieved by subdivision 
of the %-interval into multiple finite elements. Of course, the greater the number 
of elements used, the better this approximation will be. 

The matrix representation developed for the finite element embodies an 
arbitrary order of function in the c-direction. Thus, refinement with respect to 
the c-direction can be carried out independent of the subdivision of the physical 
dimension into individual finite elements. 

Given a particular breakdown into finite elements, say 3, and a prescribed 
number of terms in the c-direction, the associated set of finite element matrices 
can be constructed and placed in an inflated matrix relation of the form 

The deficiency of the relation, as regards solution of the given analysis problem, 
is that connexion of the finite elements to establish the necessary piecewise 
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continuity of the functions #+(s, c )  and #-(x, c )  in the x-direction and satisfy the 
boundary conditions has not been effected. The desired continuity is established 
through the mechanism of a connectivity matrix. The connectivity matrix is a 
Boolean transformation between the complete set of variables {q) of (57)  and the 
independent variables of the assembled system {q,}. This transformation matrix 
is readily derived by observation of the finite element idealization to obtain 

{!I> = F c l  {a ( 5 8 )  

where the nature of this relation is made clear by its explicit definition for the 
subject problem in figure 5.  

FIQURE 6. The connectivity matrix r,. 

The connectivity defined by (58) is imposed by application to (57) to obtain 

E c 1  {qc l  = iPCh (59) 

where CKCI = IKl i T C 1  (60). 

and {el = [ r c l T P 1 .  (61) 
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Equation (59) is the objective form of the finite element based matrix relation 
governing behaviour of the subject problem. Solution for the {a,] yields a func- 
tional approximation to the functions $*(x, c). Analytical integrations of these 
approximate functions then yield the non-dimensional velocity and shear stress 
profiles through (53) and (54). 

In  the present study, the width of the finite elements 1 was taken to be 0.1 
for values of a in the range 0.01 < a < 10.0. Both the cases S = 2 and S = 3 
were considered. To extend the results accurately into the continuum regime 
(10 < a < 50) the case 8 = 2 and I = 0.05 was also considered. All computations 
were performed on an IBM 360-65 electronic computer using a matrix inversion 
technique. 

3. Results and discussions 
In  3 3 the results of the finite element method are compared with the numeric- 

ally exact solution of Willis (1962), the half-range moment solution of Gross 
et al. (1957), the moment solution of Lees (1959) and the discrete ordinate solution 
of Huang & Giddens (1967). 

For the purpose of comparison, it is convenient to consider the flow rkgimes 
0.01 < a 6 5 and a > 5 separately. Such a division is necessary because of the 
nature of the approximations inherent in the present solution technique. In the 
first rdgime, a linear approximating function adequately represents the physical 
space dependence of the distribution function. In  this regime, the solution must 
be improved by increasing the order of the approximation in velocity space. 
This is also a characteristic of the velocity moment and discrete ordinate methods, 
and one would thus expect the present results to be comparable to the solutions 
obtained by these techniques. In the second regime, a low-order approximation in 
velocity space suffices, but the physical space representation of the distribution 
function must be improved, either by using higher order approximation functions 
or by refining the physical space subdivision. The latter method was used in the 
present study. 

Tables 1 and 2 present a comparison of the modified slip velocity (1 - 2q,/w), 
and shear stress ratio rzy/rzyfm, for 1 = 0.1 and S = 2 and 3 with the results 
obtained by alternate methods. For 0.01 < a 6 5, the present results are in good 
agreement with both the numerical solution of Willis and the discrete ordinate 
solution of Huang & Giddens and are superior to the analytical solutions of Gross, 
Jackson & Ziering and of Lees. In  the second regime (a! > 5) ,  the present theory 
tends to underestimate both the velocity slip and shear stress. However, as may 
be seen in table 3, refinement of the physical space subdivision improves the 
present solution. 

4. Conclusions 
The analysis of the preceding sections has indicated that very accurate solu- 

tions to the Boltzmann equation for the problem of linearized Couette flow may 
be obtained by the finite element method. The solution yields results comparable 
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to both the numerical solution of Willis and the discrete ordinate solution of 
Huang & Giddens and superior to the analytical solutions of Gross, Jackson & 
Ziering and of Lees. 

Finite Finite 
Gross element element 

a Willis Ziering Lees Giddens 1 = 0.1 1 = 0.1 
Jackson Huang s = 2 ,  s = 3 ,  

0.01 
0.1 
1.0 
1.25 
1.50 
1.75 
2.0 
2.5 
3.0 
3.5 
4.0 
5.0 
7.0 
10.0 

0.9731 
0.8559 
0.4962 
0.4515 
0.4151 
0.3846 
0.3586 
0.3165 
0-2837 
0.2572 
0.2354 
0.2015 
0.1566 
0.1174 

0.9871 
0-8844 
0.4871 
0.4422 
0.4064 

0.3523 

0.2808 

0.2341 
0.2008 
0.1564 
0.1174 

0.6393 
0.5864 
0.5416 
0.5032 
0.4698 
0.4149 
0.3714 
0.3362 
0.3070 
0.2617 
0.2020 
0.1506 

0.9787 
0.8526 
0.4963 
0.4515 
0.4151 
0.3846 
0.3587 
0.3166 
0.2838 
0.2574 
0.2355 
0.2016 
0.1567 
0.1176 

0.9819 
0.8574 
0.4942 
0.4507 
0.4149 
0.3847 
0,3588 
0.3166 
0.2835 
0.2568 
0.2347 
0.2003 
0.1545 
0.1149 

0.9811 
0.8501 
0.4963 
0.4503 
0.4135 
0.3834 
0.3561 
0.3138 
0.2811 

0.2329 
0.1992 
0.1546 
0.1151 

TABLE 1. Comparison of modified slip velocity for El, = 0.1, S = 2 and 3 
with solutions obtained using alternate methods 

a 

0.01 
0.1 
1.0 
1.25 
1.50 
1-75 
2.0 
2.5 
3.0 
4.0 
5.0 
7.0 
10.0 

Finite Finite 
Gross element element 

Jackson Huang S = 2, s = 3, 
Willis Ziering Lees Giddens 1 = 0.1 1 = 0.1 

0.9913 
0.9253 
0.6008 
0.5517 
0.5099 
0.4745 
0.4440 
0.3938 
0.3539 
0.2946 
0-2425 
0.1964 
0.1474 

0.9913 
0.9215 
0.5899 
0.5427 
0.5025 
0-4787 
0.4391 
0.3904 
0.3516 
0.2934 
0.2517 
0.1960 
0.1472 

0.9944 
0.9466 
0.6393 
0.5864 
0.5416 
0,5032 
0.4698 
0.4149 
0.3714 
0.3070 
0.261 7 
0.2020 
0.1506 

0.9913 
0.9254 
0.6007 
0.551 1 
0.5096 
0.4742 
0.4436 
0.3933 
0.3535 
0.2943 
0.2522 
0.1963 
0.1473 

0.9913 
0,9245 
0.6060 
0.5555 
0-5138 
0.4781 
0.4493 
0.3962 
0.3557 
0.2953 
0.2525 
0.1954 
0.1456 

TABLE 2. Comparison of shear stress ratio for lk = 0.1, S = 2 and 3 
with solutions obtained using alternate methods 

0.9912 
0.9243 
0.5999 
0.5494 
0.5079 
0.4735 
0,4414 
0,3912 
0.3515 
0.2924 
0.2506 
0.1949 
0.1457 

In  comparing the proposed technique with existing methods, factors such as 
computational effort, accuracy, and computational speed should be considered. 

Regarding computational effort, the present technique is similar to the dis- 
crete ordinate method in that a single formulation yields a solution for an arbi- 
trary order of approximation. This is in contrast to the velocity moment methods, 
where higher-order solutions are increasingly difficult to obtain. 
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Concerning accuracy, the finite element solution appears to converge quite 
rapidly in the near free molecule r6gime. Examination of tables 1 and 2 shows that 
the second- and third-order solutions agree well with the exact solution of Willis. 
Very accurate results may also be obtained in the near continuum rkgime, as is 
shown in table 3. 

Shear stress Slip velocity 
7 A , r  A > 

Finite Finite 
Huang & element Huang & eloment 

U Giddens s = 2, 1 = 0.05 Giddens 

10 0.1473 0.1475 0.8824 0.8830 
20 0-08044 0.07981 0.9348 0-9369 
30 0.05533 0-05470 0.9558 0.9569 
40 0.042317 0.04155 0.9664 0.9673 
50 0.03406 0.03349 0.9728 0.9737 

TABLE 3. Comparison of slip velocity and shear stress with discrete ordinate 
solution for large values of a 

8 = 2 ,  1 = 0.05 

A discussion of computational time is difficult, since this topic is either not 
applicable to the above theories, i.e. they are analytical, or is not mentioned by 
the various authors. A typical run time for the present technique was approxi- 
mately 5 min (real time) on an IBM 360-65, with most of the time being used for 
the matrix inversion. It should be noted, however, that the numerical technique 
utilized out-of-core storage, which increased the real time considerably. Further- 
more, no attempt was made to take advantage of the symmetry of the problem, 
which would have reduced the size of the matrix to be inverted, and thus the 
computational time. Preliminary work on a numerical technique which considers 
the hyperbolic nature of the governing equations indicates that a substantial 
reduction in computational time may be possible. 

Although the present study is based upon a particularly simple model of the 
Boltzmann equation, the technique can be applied to more complex governing 
equations. One such equation is the linearized Boltzmann equation in a curvi- 
linear co-ordinate system, where derivatives of the distribution function with 
respect to microscopic velocities are introduced. Preliminary results for the 
problem of linearized cylindrical Couette flow are encouraging. 

The extension of the technique to non-linear problems is straightforward. 
An appropriate functional expansion, e.g. of the type proposed by Mintzer 
(1965), coupled with an iterative technique, will yield an algebraic system of 
equations no more complex than the one considered herein. An analysis of the 
problem of non-linear Couette flow with heat transfer based on the BGK model 
requires a single matrix inversion (for a given Knudsen number), with the itera- 
tions requiring only matrix multiplications. For this problem, the computa- 
tional time for present technique should be comparable to that required by the 
discrete ordinate method. 

To extend the present technique to unsteady problems, it is only necessary 
to allow the coefficients q to be functions of time. For unsteady Couette flow, 
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an analysis identical to the one presented herein yields a system of equations of 
the form, 

CJtC1 k] + [Kc1 {ac> = 

which must be solved by an appropriate technique for initial value problems. 

The authors would like to express their appreciation to Dr John W. Leonard 
for his suggestions during the course of this investigation. We would also like to 
thank M i  Dave Herendeen for performing the numerical computations. 
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